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We develop a theoretical approach to hairpin-loop formation of single-stranded(ss) DNA by treating the
strand as a two-state system in which bases are either “stacked” or “unstacked.” The looping kinetics of ssDNA
is shown to be intrinsically different from that of a wormlike chain; it is mainly controlled by stacking-
breakage probability, not by the mean curvature of loops, and highly sensitive to the composition of the loop
as seen in recent experiments. Our estimate of a stacking energy for polysdAd, −3.9 kcal/mol, is consistent
with known results.
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Beyond the genetic code that it carries in the sequence,
DNA also displays various conformational properties, which
are crucial to its biological functions. For example, the bind-
ing affinity of some DNA-binding ligands often relies on the
flexibility of their binding site on the DNA[1]. Also, the
looping kinetics of DNA is sensitive to the chain stiffness
[2–5]. DNA strands are often modeled as a wormlike chain
(WLC) [cf. Fig. 1(a)] [6]. However, recent experimental
studies unambiguously demonstrated the limitation of the
WLC model: it fails to describe adequately conformational
fluctuations of homogeneous single-stranded(ss) DNA [e.g.,
polysdAd and polysdTd] with attractive stems at both ends of
the chain or more simply DNA beacons[2–4,7]. These ex-
periments suggest that the rigidity of these molecules is
mainly determined by the so-called “stacking” interactions
between two consecutive bases along the strand. This leads
to stacking-sensitive(thus sequence-dependent) looping ki-
netics, intrinsically different from that of a WLC[7].

Despite significant effort in the past[8–10], a consistent
theoretical model of ssDNA has, so far, been lacking. The
main difficulty lies in that the origin of base stacking, which
gives rise to stacking-sensitive chain persistency, has not
been well understood despite recent all-atom molecular mod-
eling [11]. The purpose of this paper is twofold. We first
introduce a simple but physically motivated model to de-
scribe the stacking-induced rigidity. Then, we apply this
model to explain some of recent experimental observations
on DNA beacons by Goddardet al. [7]. Our approach can be
complimentary to, but will provide a more systematic inter-
pretation than, a thermodynamic consideration by Aalbertset
al. [12].

Here, we do not attempt to further clarify the origin of
base stacking. Instead we adopt a two-state model of ssDNA,
hereafter called astacking chain model[cf. Fig. 1(b)], in
which bases are classified as either “stacked” or “unstacked”
[13]. This model captures base stacking, as illustrated in Fig.
1(c), at a coarse-grained level. This simplification is invoked
by the fact that the hydrophobicity of bases, which is be-
lieved to be mainly responsible for base stacking, is short

ranged[11]. For simplicity, bases are assumed to have the
same segment length,. If and only if two neighboring bases
are aligned in parallel or stacked, they gain an energy of −e
(e.0, by convention). Note that two stacked bases are not
allowed to rotate around their axis, losing an entropy associ-
ated with rotational degrees of freedom. A typical stacking
energy forAA pairs ranges from the earlier estimate[9] of
−e=−6kT (or −4 kcal/mol at room temperature) to more re-
cent values of the same order of magnitudes[11], depending
on the solvent environment, wherek is the Boltzmann con-
stant andT is the temperature. If unstacked, the bases are
free to bend and rotate without any energy cost. The confor-
mation of such a stacking chain is fully characterized by the
distribution ofui [cf. Fig. 1(b)], an angle between segmentsi
and i +1 [14],

Pshcosuijd = p
i=1

N−1

f1 + wdscosui − 1dg, s1d

where

w ; Vfexp sbed − 1g s2d

and b;1/kT. The entropy associated with the degrees of
freedom for rotating the base plates is approximately incor-
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FIG. 1. Schematic representation of(a) a wormlike chain
(WLC) that tends to bend smoothly(it remains rodlike within,p,
the persistence length), and(b) a stacking chain that models ssDNA
as schematically shown in(c). Unlike the WLC, the stacking chain
allows abrupt bending or stacking breakage, as marked by an arrow
in (b).
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porated into the model through the parameterV. Physical
quantities, such as loop-formation probability and “equilib-
rium” closing times, can be derived from the restricted par-
tition function, i.e., a partition function summed over all re-
alizations of chain conformations(or ui) with the end-to-end

vectorRW fixed in space.
The underlying assumption in our stacking model[cf. Eq.

(1)] is that base stacking is a short-ranged effectand that
there is no other force that influences the chain stiffness[15].
Then it can readily be seen that the energy cost for bending
entirely depends on the number of bonds broken, not the
radius of curvature as in a WLC. The resulting persistence
length should vary inversely with the probability of breaking
base stacking:,p~exp se /kTd. This is in contrast to
,ps~1/kTd in a WLC [6]. Also the stacking rigidity is dis-
tinct from that of double-stranded(ds) DNA, which is com-
plicated by base pairing between two complimentary base
pairs and the geometrical constraint imposed by the double-
ness of the chain, for example. To a certain extent, dsDNA
can be well characterized as a geometrical object, as implied
by the WLC model.

In our model, the end-to-end distance ditribution function,
for a given total bond numberN, assumes the following hi-
erarchical form in the Fourier space:

GN+1skd = o
m=0

N−1

GN−mskdSw

2
Dm

Sm+1skd, s3d

where G1skd=sinsk,d /k,, G0skd=1, and Smskd
=sinsmk,d /mk,. The expression can be obtained from a dia-
grammatic expansion ofGN+1skd, where each term in the
series represents the probability of a particular chain confor-
mation[16]. While the low-temperature, small-N behavior of
the model shows unique stacking properties and is relevant
for the study of DNA structural formation, the high-
temperature, large-N behavior displays typical persistent
chain behavior. For example, the mean square end-to-end
distance forN@1 in this model has the Kratky-Porod form

kR2l = 2,pLh1 − ,p/Lf1 − exps− L/,pdgj, s4d

where

,p = s1 + wd,/2 s5d

is the effective persistence length andL;N,.
Recent experiments on ssDNA probed the very nature of

chain persistency of polysdAd and polysdTd, which were
shown to have a strong and weak stacking tendency, respec-
tively [2,4,7]. In a fluorescence experiment, Goddardet al.
attached a single strand of polysdAd and polysdTd of N
monomers to stems consisting of five-base sequenceTTGGG
at one end and its complementaryAACCCat the other end.
The closing time of each strand can be obtained by examin-
ing the fluorescent intensity of the fluorophore and the
quencher attached to the tips of the chain, hence providing an
indirect probe of the persistency that controls the closing
kinetics of the strand(see Fig. 2).

The equilibrium densities of the open and closed struc-
tures are related to each other throughtoro=tcrc, whereto
andtc are, respectively, the characteristic opening and clos-
ing time, andro andrc are, respectively, the chain densities
of the open and closed conformations. If the closure of the
stem causes an energy gainv and an entropy losss, we have

tc = toe
−bv+sro

0/rc
0, s6d

where ro
0 and rc

0 are chain densities of the corresponding
systemwithout the attractive stem part. Sincet0 is expected
to be proportional toebv−s with no explicitN dependence,tc
directly scales asrc

0/rc
0. Three essential features emerge from

this consideration.
(1) In the Gaussian-chain model, the probability of closed

conformations scales asb/ l3N3/2, whereb is a constant pro-
portional to the volume of the attractive stem. On the other
hand, the probability of the open conformations is approxi-
mately 1 with a possible correction of orderb/N3/2. Hencetc
varies asN3/2 and should be a temperature-independentcon-
stant according to the Gaussian model. This description is,
however, inconsistent with the polysdTd data of Goddardet
al. [7] that show weak temperature dependence of the clos-
ing time.

(2) The weak temperature dependence of the scaled
tc/N3/2 in polysdTd can be attributed to misfolded conforma-
tions as illustrated in Fig. 2, where a smaller loop is formed
due to theAT bonding of theAA segment in the stem with
any TT segment in the polysdTd loop. In addition to other
open conformations, this conformation contributes toro

0

since the flurophore and quencher ends are in an open posi-

FIG. 2. Conformations considered in text:(a) open polysdTd
conformation,(b) misfolded polysdTd conformation,(c) closed poly
sdTd conformation,(d) open polysdAd conformation,(e) misfolded
polysdAd conformation, and(f) closed poly-A conformation. Using
an analysis of the probability densities and binding energy scales
for each of these plots, it can be shown that(b) and (c) should be
included in the interpretation of polysdTd data, while(d) and(f) are
crucial for the interpretation of polysdTd data in Ref.[7].
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tion. Up to a multiplicative constant, the misfolded-chain
density can be written as

ro
0fMisfoldedg = 1 +BsNdexpsbu − sd + ¯ , s7d

whereu and s represent the energy gain and entropy loss,
respectively, for forming the twoAT base bonds. The con-
stantB accounts for the entropy associated with misfolded
loop formation and can be shown to have weakN depen-
dence BsNd=on=1

N−1n−3/2. The steric repulsion between
“wrong” base pairssi.e., theCA pairs near the two matched
AT pairsd, however, contributes tou and hence reduces the
magnitude of the total binding energyu. The density of
closed conformations,rc

0, is unchanged in this case. Assum-
ing bu−s@1, we can estimate the closing time as a function
of temperature,

tcfpolysdTdg/N3/2 ~ BsNdexpsbud. s8d

When misfolding occurs, the closing timetc becomes tem-
perature dependent as implied by Eq.s8d. This is in contrast
to the previous case of the Gaussian chain model for which
the “equilibrium” closing time is solely determined by the
chain entropy. Hence, the weak temperature dependence, as
seen in experimentsf7g, arises from the competition between
the chain entropy and the excess energy due to misfolding.
Figure 3 shows a semilogarithmic plot of the scaled
tc/ fBsNdN3/2g versusb for four polysdTd chains, adopted
from Ref.f7g. The data collapse into anN-independent curve
after the scaling. The slope can be used to determineu; bu

=5.8 at T=300 K. This misfolding picture in polysdTd
agrees with the previous assertion that there is no pro-
nounced stacking in polysdTd f17g.

(3) To examine polysdAd, we consider the large-N limit
L@,p in Eq. (3). The free energy change involved in stack-
ing reaction was estimated to beDG=−1.5 kcal/mol, imply-
ing ,p>w, /2>6, [18]. Hence long chains(or equivalently
N@6) can be approximated by a Gaussian chain with 2,p as
an effective segment length. Ifn is the total number of bro-
ken stacking bonds along the chain, andCosN,nd and
CcsN,nd are the distribution ofn for open and closed sates,
respectively, then we havero=onCosN,nds4pdn and rc

=onCcsN,ndn−3/2. While explicit calculations ofrc/ro based
on Eq.(3) will be reported elsewhere[16], we here provide a
meanfield approximation, which amounts to keeping a term
that dominates the sum and becomes accurate asN→`. We
find that the closing probability at a mean-field level be-
comes Ps0d=rc/ro,bs,pLd−3/2. This consideration, how-
ever, does not completely describe hairpin-loop formation.
Due to the geometrical constraint on a loop conformation as
illustrated in Fig. 2, loop formation should be accompanied
by one stacking breakage in the stem with an energy cost
e—note that the stem size is smaller than,p, preferably as-
suming a rodlike structure when it is in an open conforma-
tion. Hence we have

rc
0 ~ w−1Ps0d ~ sv−1,p

−3/2dsNld−3/2. s9d

From Eq.s6d the closing timetc is

tc ~ N3/2w5/2 ~ N3/2exps2.5e/kTd, s10d

where a largew approximation has been used in view of Eq.
s5d. Note here that the origin of the exponential dependence
of tc in Eq. s10d is different from that in Eq.s7d in that the
former arises from the stacking interaction between two con-
secutive bases while the latter comes from the hydrogen
bonding between a pair ofA-T separated by a rather long
distance along the contour. The exponential dependence in
both cases accounts for the energetics involved in chain mis-
folding fEq. s7dg or chain closingfEq. s10dg.

In Fig. 3, we plottc/N3/2 for polysdAd in a semilogarith-
mic scale as a function of 1/T for variousN ranging from
N=8 to 30. This plot shows how the experimental data of
Ref. [7] approach anN-independent straight line for largeN,
i.e., N=30, 21, 16. This asymptotic behavior is indeed con-
sistent with Eq.(10). A fit to the three higher-N sets of the
polysdAd data to Eq.(10) givesbe=16.3/2.5 atT=300 K, or
e=6.5 kT=3.9 kcal/mol per base stacking. This value can be
compared withe<3.6 kcal/mol obtained from a recent nu-
merical simulation[11]. It should be noted that the experi-
ments of Goddardet al. were conducted in the presence of
0.25M NaCl, while the solvent effect was not explicitly con-
sidered in the modeling of Luoet al. [11]. Earlier estimates
of the stacking energy also fall within this range. In particu-
lar, Dewey and Turner estimatede to be 4 kcal/mol for poly
sdAd and 3.2 kcal/mol for polysdAd in 0.05M ionic solution
[9], based on the thermodynamic analysis of a temperature-
jump study; Breslauer and Sturtevant[19] obtained e
<3.4 kcal/mol, based on a differential scanning calorimetry

FIG. 3. The closing timestcd of a hairpin loop(in ms) as a
function of temperatureT: (a) polysdTd and (b) polysdAd. Our re-
sults for the polysdTd and polysdAd are represented by the dotted
and solid curves, respectively. Our scaling analysis predicts a
straight line in this semilogrithmic plot. Our estimate of staking
energy, deduced from the slope of the solid curve, is favorably
comparable to previous estimates[see the relevant discussion below
Eq. (10)]. Experimental data adopted from Ref.[7] are represented
by various symbols: filled circlessN=30d, filled squaressN=21d,
filled diamondssN=16d, triangles sN=12d, crossessN=10d, and
plus signssN=8d. For polysdTd, the closing time has been multi-
plied by 10/fN1.5BsNdg [Eq. (8)], where the factor 10 was intro-
duced for clarity of the plot. For polysdAd, the closing time has
been multiplied by 1/N1.5 [Eq. (10)]. The large-N data, represented
by the filled symbols, approach the asymptotic straight line.
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measurement of a chain involving 7 adeninesAd bases. Fi-
nally, our Eq.(10) implies that, asT→`, tc will get satu-
rated at the corresponding value for a Gaussian chain:tc
~N3/2.

The stacking-chain model has very unique implications
for loop formation. For WLCs, the energy cost for forming a
loop depends on the radius of curvature of the chain and thus
the chain length. As a result, longer chains can form a loop
more easily ifL&,p [5]. In sharp contrast to this case, the
energy cost in the stacking chain model does not depend on
the curvature. It rather depends on the number of additional
broken bonds caused by chain looping, which were previ-
ously stacked next to each other. In this case, the energy cost
does not depend on the chain length, since the chain can fold
up into a loop as long as a few stacked positions in the
middle are broken.

This physical picture presented here, however, deviates
from that of Goddardet al. [7] that the enthalpic barrierDHc
to looping varies linearly withN: DHc,N. The N depen-
dence ofDHc in their Fig. 3 was read off by analyzing the
slope of the linear fit to their data for lntc for variousN.
This estimation is, however, not very conclusive, considering
the deviation of their data from the fitting line(see their Fig.
3). On the other hand, we have used a scaling form derived
from a microscopic model, which becomes very accurate in
the asymptotic limitN@6 or L@,p. As clearly indicated in
Fig. 3, the polysdAd data for N=16,21,30 collapse into a
single straight line in this plot, implying anN-independent
enthalpic barrier. Analysis of short chains(i.e., N=8,10,12),
however, requires a more complete theory, which will be
reported elsewhere[16]. The looping of a short chain would

necessitate additional breakage of stacking but otherwise our
general picture of stacking rigidity remains valid.

Ansari et al. noted that the misfolded conformations, as
displayed in their Fig. 2, would trap the polysdAd chain en-
ergetically and cause a possible nonexponential relaxation of
the system[3,20]. A much more involved model was then
developed to include the misfolded conformations[3]. God-
dardet al., on the other hand, left out the possibility of mis-
folded intermediate states, and attempted to interpret their
experimental results based on an enthalpic consideration
alone [21]. This discrepancy can be resolved in our simple
energetic analysis presented above; the misfolded states have
a typical binding energy of 6kT estimated from the polysdTd
measurement at room temperature. Hence the misfolded
states are important in interpreting the polysdTd experiment
as these states would be treated by the florescence experi-
ments as open states. On the other hand, the misfolded states
accompany the breakage of a stacked polysdAd at the ex-
pense of a typical energy of 2.5e=16.3kT at room tempera-
ture, and are thus disfavored energetically in polysdAd.

In summary, we have used a simple model of ssDNA, i.e.,
the stacking chain model, to account for stacking-sensitive
looping of ssDNA as seen in recent experiments. It is worth
noting that the type of bases can be sensitively reflected in
macroscopicobservables such astc. As a result, the closing
dynamics of the stacking chain is intrinsically different from
that of a wormlike chain.
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